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Resuks are given for the measurement of the intensity of heat transfer 
between a layer of disperse material for a slag particle-air system and 
a vertical surface in motion relative to each other. 

Particular attention has been devoted in recent 
years to the study of the process of heat transfer be- 

tween a surface and a layer of moving (mixing) parti- 
cles, given limited times of contact [1-4]. 

This is associated primarily with the fact that the 
chemical industry, as well as other branches, employ 
apparatus in which the heating or cooling of a moving 

(mixing) layer of disperse material is accomplished 

through heat-exchange surfaces which are either em- 
bedded in or are in contact with the bed. On the other 
hand, a dense moving (mixing) layer may be regarded 
as a hypothetical fluidized bed whose porosity is at a 

minimum and remains constant for the various velo- 
cities of particle motion. 

The quantitative relationships governing the transfer 

of heat in a dense moving (mixing) layer may there- 
fore be used to explain the transfer of heat in a fluid- 

iced bed. 
The exchange of heat between a vertical wall and an 

agitated layer of glass spheres has been investigated 
in [I]. The rate of particle replacement at the heat- 

exchange surface was not measured directly, but esti- 
mated from indirect considerations. 

The research described in [2] and [3] is of great 
interest since it provided for the possibility of men- 
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Fig .  1. S c h e m a t i c  d r a w i n g  of  e x p e r i m e n t a l  f a c i l i t y :  
1) ca s ing ;  2) annu l a r  box; 3) e l e c t r i c  m o t o r ;  4) r e -  
duc ing  g e a r ;  5) r e s i s t a n c e  t h e r m o m e t e r ;  6) s e n s i n g  
e l e m e n t  for  m e a s u r e m e n t  of h e a t - t r a n s f e r  coef f i c ien t .  

s u r i n g  d i r e c t l y  the  speed  of the d i s p e r s e  m a t e r i a l  
l a y e r  r e l a t i v e  to the h e a t - e x c h a n g e  s u r f a c e .  The  t r a n s -  
f e r  of  hea t  f r o m  a g r a v i t a t i o n a l  l a y e r  of sand  d e s c e n d -  

ing within a tube 50 mm in diameter to the wall of that 
tube was investigated in [2]. The intensity of heat 

exchange between a layer of finely dispersed powders 
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Fig .  2. E x p e r i m e n t a l  r e l a t i o n s h i p  be tween  c~ (W/m 2. 
*deg) and 1/T ( s e o - i ) ;  1, 2, 3) p a r t i c l e  d i m e n s i o n s  

0.78, 1.2, and 2.2 ram,  r e s p e c t i v e l y .  

of various materials and a moving vertical surface 

was measured in [3]. Many of the experiments in [2, 
3] were conducted in a region of relatively low parti- 

cle velocities and, consequently, in a region of rela- 

tively high times of contact with the surface, i.e., 
Fo > i. At high speeds of particle motion, when the 

time of particle contact with the heat-exchange sur- 

face is not great (Fo << i), the temperature gradient 
is localized within the limits of a single particle row. 

The intensity of heat exchange between a surface 

and a single particle in contact with that surface was 
calculated on a computer in [4]. 

For the glass bead-air system the calculation 
showed that with a reduction in contact time the inten- 

sity of heat transfer increases and tends toward the 

limit which is attained with Fo _< 0.i. We were there- 

fore interested in determining experimentally the co- 
efficient of heat exchange between a moving particle 
layer and a, surface, for a relatively limited contact 

time, i.e., I > Fo > 0.01. 
Figure i shows a diagram of the experimental in- 

stallation. Casing 1 houses an annular box 2 intowhich 
the layer of slag spheres is poured (Cp = 752 J/kg �9 
o deg, Xp = 0.59 W/~ "deg, pp = 2720 kg/m 3) from one 
of three fractions (mean particle diameter 0.78, 1.2, 

and 2.2 ram).  
The  box was se t  into un i fo rm r o t a t i o n  by m e a n s  of 

e l e c t r i c  m o t o r  3 through r e d u c t i o n  g e a r  4. Revo lu t ions  
could  be a l t e r e d  f r o m  3 to 80 r p m  and f rom 0.3 to 2 
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r p m  by r ep lac ing  the reduc t ion  gears  and by vary ing  
the voltage at the t e r m i n a l s  of the e l ec t r i c  motor .  

Two n o n m o v i n g s e n s o r s  5 and 6 of ident ical  design 
were embedded in the m a t e r i a l  layer .  The s e n s o r s  
were plexiglas  pla tes  on which l a cque r - i n su l a t e d  0.12 
m m  copper wire  had been  wound, t u rn  by turn .  The 
plate was l en t i cu l a r  in c ros s  sect ion,  2.5 m m  thick at 
the cen te r .  

Sensor  5 was used to m e a s u r e  the t e m p e r a t u r e  of 
the s l a g - s p h e r e  l ayer  and was connected to the m e a -  
su r ing  br idge  c i rcu i t  as a r e s i s t a n c e  t h e r m o m e t e r .  

Sensor  6 was used  to m e a s u r e  the in tens i ty  of heat  
exchange between the sur face  and the pa r t i c l e  l ayer  
moving r e l a t i ve  to it. The senso r  was heated by the 
e l ec t r i c  cu r r en t  pass ing  through it. Its su r face  t e m -  
p e r a t u r e  was kept cons tant  at 60 ~ C, accura te  to 
within 0.2 ~ C. This  was achieved by ba lanc ing  the 
e l e c t r i c a l  b r idge  c i r cu i t  of which s e n s o r  6 r e p r e s e n t e d  
one a rm.  

A device was moun tedbe tween  senso r  6 and the r e -  
s i s t ance  t h e r m o m e t e r  5 m e a s u r i n g  the t e m p e r a t u r e  of 
the l aye r ,  this  device  des igned to s t i r  the pa r t i c l e s  
and to p reven t  s enso r  5 f rom coming into contact  with 
the wake of hea ted  p a r t i c l e s  behind senso r  6. 

On a t t a inmen t  of a s teady the rma l  r eg ime ,  we m e a -  
su red  the following quant i t ies  in the s y s t e m :  the t e m -  
p e r a t u r e  of the slag pa r t i c l e  l ayer ,  the e l ec t r i c  c u r r e n t  
pass ing  th rough  senso r  6, and the n u m b e r  or r e v o l u -  
t ions  executed by box 2. On the bases  of these data we 
ca lcu la ted  the t ime  of contact  be tween  the s lag spheres  
and the s enso r  sur face  

b 

D n  

and the coeff ic ient  of heat  exchange between the s e n s o r  
su r face  and the l a y e r  of moving p a r t i c l e s  

5 =  

(6o - -  to) F 

The e l ec t r i c a l  r e s i s t a n c e  R of the s enso r  and i ts  s u r -  
face t e m p e r a t u r e  were  kept cons tant  dur ing  the cou r se  
of the expe r imen t s .  

The heat  l o s s e s  through the unheated ends of the 
s enso r  were  d e t e r m i n e d  e x p e r i m e n t a l l y  by compar ing  

the power d i ss ipa ted  in the l aye r  under  ident ical  con-  
di t ions  for three  s e nso r s  of ident ical  design,  but with 
va r ious  t e s t - s e c t i o n  lengths of l = 75, 50, and 25 ram. 
The exper imen t s  demons t r a t ed  that the lo s ses  of heat  
through the unheated ends of the s e n s o r  at l = 50 mm 
a r e  l e s s  than 2%. 

The ma x i mum m e a s u r e m e n t  e r r o r  in the magni tude  
of the h e a t - t r a n s f e r  coeff icient  under  the condit ions of 
the expe r imen t s  did not exceed 5%. 

The r e s u l t s  of the expe r imen t s  a re  shown in Fig.  2 
in the form of ~ as a function of the r e c i p r o c a l  of the 
contact  t ime .  

We see f rom the graph that when 1/T ~ 20 the m a x -  
i m u m  is a t ta ined.  However,  any fu r the r  i n c r e a s e  in 
the veloci ty  of the l ayer  r e s u l t e d  in a reduced  coeff i-  
c ient  of heat  t r a n s f e r .  The c i r c u m s t a n c e  that the m a x -  
i m u m  h e a t - t r a n s f e r  coeff ic ient  for the th ree  i n v e s t i -  
gated pa r t i c l e  f r ac t ions  l ies  approx imate ly  within an 
ident ica l  r ange  of ve loc i t i es  ind ica tes  the dis cont inuous 
s t r e a m l i n i n g  of the hea t -exchange  sur face  by the l aye r  
[bed]. 

Visual  obse rva t ions  of the flow pas t  the pa r t i c l e  
l aye r  by m e a n s  of a pa r t i a l ly  embedded senso r  con -  
f i r m e d  that the d i scont inuous  flow se t s  in  at  a contact  
t ime  of T m 0.05 sec.  

The r e s u l t s  of three  s e r i e s  of e xpe r i me n t s  a re  
shown in Fig.  3 in nond imens iona l  Nu and Fo coo rd i -  
na tes .  The dashed l ine  in this f igure  is a plot of the 
data obtained through a compute r  ca lcu la t ion  for a 
s ing le  sphere  [4] in contact  with the hea t - exchange  
sur face  of the a i r - g l a s s  sphere  sys t em.  

We see  f rom the graph that for low ve loc i t i es  of 
l aye r  mot ion  r e l a t ive  to the s e nso r ,  the e x p e r i m e n t a l  
points  for the three  pa r t i c l e  f r ac t ions  fall  on a s ingle  
curve .  In the reg ion  of high ve loc i t i es  of mot ion,  where  
the flow of the layer past the sensor is discontinuous, 
the expe r imen ta l  curves  for the subjec t  f rac t ions  d i -  
verge .  It may  be a s sumed ,  however ,  that in  flow with-  
out s epa ra t ion  the expe r imen ta l  points  would l ie  about 
a common envelope,  approaching  the e x p e r i m e n t a l  
cu rve  der ived  for l a r g e r  par t i c les �9  

It should be noted that the m a x i m u m  magni tude  of 
the Nu m e m b e r  de r ived  expe r imen ta l l y  ( large  par t i c les )  
and the theore t i ca l  value for a s ing le  sphere  [4] v i r -  
tua l ly  coincide.  Here  the r e l a t i ve  contact  t ime  (Fo) in 
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Fig.  3. In tens i ty  of heat  t r a n s f e r  be tween  sur face  and 
bed  as a funct ion of contact  t ime ;  1, 2, 3) pa r t i c l e  d i -  
m e n s i o n s  0.78, 1.2, and 2.2 m m ,  r e spe c t i ve l y ;  the 

dashed l ine denotes  the theore t i ca l  cu rve  [4]. 
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which the m a x i m u m  value of the Nu number  is a t ta ined 
was on the o rder  of Fo ~ 0.02 in the exper imen t ,  i n -  
s tead of Fo ~ 0.1 as ca lcula ted  in [4]. Since the t e m -  
p e r a t u r e  g rad ien t  for l imi t ed  contact  t ime is loca l ized  
near  the point of contact,  the condit ions for pa r t i c le  
adhes ion  to the sur face  a re  of dec is ive  impor tance .  

It is poss ib le  that this s e r v e s  to explain that the 
e x p e r i m e n t a l l y  der ived  Numa x values  were a t ta ined 
for a s h o r t e r  contact  t ime  than had been ca lcula ted  
I4]. Thus  the expe r imen t s  d e m o n s t r a t e  that the i n t e n -  
s i ty  of heat  t r a n s f e r  in a moving (mixing) and f luidized 
bed is l imi ted .  A fu r the r  i n c r e a s e  in the r e l a t ive  ve -  
Iocity of pa r t i c l e  mot ion in this case and a reduc t ion  
in their  t ime of contact  with the sur face  will no longer  
lead to an i n c r e a s e  in the coefficient  of heat  t r an s f e r .  

For  the s y s t e m  in ques t ion ( a i r - s l a g  spheres)  this 
condit ion is e x p r e s s e d  by the s imple  r e l a t i onsh ip  

Num.x = 12-- 13.4, 

which may be used to determine the maximum coeffi- 

cient of heat transfer between the walls of the appara- 
tus and the mixing or moving layer of disperse material, 

as well as to evaluate the intensity of heat transfer 

in the fluidized bed. 

NOTATION 

Here b and F are the width and surface area of the 

sensor; n is the number of revolutions; I and Rare the 
electric current and resistance of the sensor; Cp, ~p, 

and pp are the heat capacity, thermal conductivity, and 

density of the solids; Nu is the Nusselt number; Fo is 

the Fourier number. 
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